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Abstract  In this paper, the possibility of satellite communication systems using a multiband UWB 
signal format is considered. For terrestrial short-distance high-speed communications, multiband UWB 
schemes are proposed in IEEE 802.15 TG3a and the discussion is ongoing at the standardization body. In 
the multiband UWB scheme, frequency hopping is adopted over 3.1 - 10.6 GHz, which is regulated by 
the FCC (Federal Communication Commission) of the U.S.A., and the bandwidth of one hopping 
spectrum (subband) is about 500 MHz. Multiband technology inherently has some suitable characteristics 
for terrestrial UWB such as applicability to variable transmission rates, avoidance of harmful interference 
to other systems, simple localizability of frequency allocations, and so forth. In this paper, a satellite 
communication downlink employing the multiband UWB signal transmission is considered. The total 
bandwidth is assumed to be 500 MHz in the allocation of the satellite downlink and it is divided into 
multiple subbands. We report the initial results of the study on the link budget calculation and the 
estimation of the signal transmission speed assuming multiband UWB signal transmission from a GSO 
satellite to the earth’s surface. 

 
 
あらまし  2003 年 10 月に東京都の日本科学未来館で開催された、電子情報通信学会 日韓

共催衛星通信研究会で発表された「衛星通信における UWB適用の一検討」と題する論文を紹介
する。発表論文は英文のため和訳を入れずに掲載する。 
衛星通信におけるマルチバンド UWB方式の可能性を検討する．地上における近距離高速通信
としてマルチバンドUWBが IEEE802.15 TG3aで提案され標準化へ向けた議論が進められている．
マルチバンドUWBでは，米国FCCの規定に沿う3.1-10.6GHzを約500MHzのサブ帯域に分割し，
シンボルごとに周波数ホッピングする方式で，（１）伝送レートの可変，（２）干渉回避，（３）

地域に応じた周波数利用，等が容易となるメリットがある．本稿では，衛星帯域 500MHz を複
数帯域に分割して使用するマルチバンド UWBの適用可能性について検討し，衛星から地上に向
けてマルチバンド UWB 信号を送信した場合の信号強度や信号伝送速度について基礎検討を行
なった結果について報告する． 
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1. Introduction 
Recently, there has been much discussion on the use of UWB devices and the FCC (Federal 

Communications Commission) of the United States has defined the characteristics of UWB devices to 
open the door to utilizing the UWB devices for commercial use [1].  According to the FCC 
regulation, the emission level is restricted to as low as -41.3 dBm/MHz in 3.1 GHz – 10.6 GHz as 
described in the next section.  

Although the current discussion on the UWB has mainly been done for terrestrial short distance 
communications, there is a possibility that UWB signal is radiated from satellites to the earth as one 
type of satellite services (“Satellite UWB”). It is shown that the satellite UWB has good property by 
which new satellite applications can be developed. 

 
 
 

2. FCC Regulation on UWB 
U.S. FCC has already regulated the UWB system, including the operating restrictions, authorizing 

the use of UWB devices on an unlicensed basis.  Various applications are considered, such as 
communications, measurements, radar systems, and so forth.  The followings are the spectrum and 
emission limitations of the regulation for handheld UWB devices, which are regarded as typical 
communication devices using UWB. 

 
 
Bandwidth : Fractional bandwidth equal to or greater than 0.2, 

  or bandwidth equal to or greater than 500 MHz. 
 
Radiated emissions : 

  0.96 - 1.61 GHz <  -75.3 dBm/MHz 
  1.61 - 1.99 GHz <  -63.3 dBm/MHz 
  1.99 - 3.1 GHz <  -61.3 dBm/MHz 
  3.1 - 10.6 GHz <  -41.3 dBm/MHz 
  10.6 GHz - <  -61.3 dBm/MHz 

 
Peak level of emissions : A peak level of the emissions contained within a 50 MHz bandwidth  

  centered on the frequency at which the highest radiated emission is 
  0 dBm EIRP. 

 
 
 

3. Satellite UWB 
The satellite UWB system in this paper is a fixed satelite system, which employs a UWB type 

signal for downlink transmission. Figure 1 shows the conceptual view of satellite UWB system using 
the Ku-band.  The UWB signal is usually characterized by transmitting very short monocycle 
wavelets or pulse modulated carrier. As presented in Section 2, the signal bandwidth of the terrestrial 
UWB devices is very wide at more than 500 MHz. The assumed bandwidth used in a satellite UWB 
system is 500 MHz. 

The satellite UWB has suitable characteristics for exploring new satellite services from the 
following perspectives: 

- The UWB signals can be overlaid on the existing narrowband spectrum.  This is expected to contribute 
to increasing spectrum efficiency of the satellite systems. 
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- The terrestrial UWB devices can be utilized for satellite UWB applications, which would reduce the 
cost of the satellite system.  Terrestrial UWB devices are expected to become very popular and 
mass-production of the terminals will greatly reduce the production cost of the hardware.  
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Fig. 1. Conceptual view of satellite UWB system using Ku-band. 
 
 
 

4. Link budgets 
In the satellite UWB systems, if the power transmitted from a satellite to the earth is at the same 

level as the terrestrial UWB devices, the received signal on the earth is very low, and the 
transmission speed is limited to very low. Therefore, higher power, which is comparable to those with 
existing satellite transponders, is assumed to be transmitted from the UWB satellite. This paper 
assumes the satellite transmission power as being 108 W (20.3 dBW) and the transmitting satellite 
antenna diameter as 1.27 m.  When these transmission characteristics are adopted by the satellite to 
transmit the UWB signal to the earth, radiated EIRP from the satellite is much greater than that of the 
terrestrial UWB.  But the signal power density received at the earth’s surface is assumed to be 
comparable to or smaller than that of the terrestrial UWB devices as described below. 

Link budgets of the downlink are estimated in the case where 500 MHz in the Ku-band is assumed 
as the downlink spectrum.  Table 1 summarizes the downlink link budget of the system. 

The free-space path loss for the distance of 3 m at the center frequency of 6.85 GHz, a typical 
value for the terrestrial UWB devices using the 3.1 - 10.6 GHz spectrum, is around 60 dB. In the 
terrestrial UWB devices, the power density, which is given by [EIRP]-[Path Loss] in dB scale, at a 
distance of 3 m from a transmitter is -101.3 dBm/MHz. The table shows that the power level of the 
satellite UWB signal received at the earth’s surface (-148.1 dBm/MHz) is much smaller than the 
signal level at the distance of 3 m of the terrestrial UWB.  Therefore, other services shall not be 
affected by the satellite UWB systems. 
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Table 1. Downlink link budget. 
 

Center frequency 12 GHz 
Bandwidth 500 MHz 
Transmission power 20.3 dBW 
Satellite antenna diameter 1.27 m 
Satellite antenna gain 
(efficiency = 60%) 

41.8 dBi 

EIRP 65.1 dBm/MHz 
Link margin 5 dB 
Rain margin 3 dB 
Path loss to the earth surface 
(at 12 GHz) 

205.2 dB 

Power density at earth surface -148.1 dBm/MHz 
 
 
 

5. Throughputs 
5.1. M-ary PAM UWB 

M-ary PAM(Pulse Amplitude Modulation) is the modulation scheme that the information could be 
modulated with +/-M variations. The pulse has a short duration, and its energy concentrates within 
the bandwidth of the satellite downlink, in the satellite UWB (Fig. 2). 

Results of the research have been reported for the communication performance of the terrestrial 
UWB devices.  Here, the performance is discussed using the approach presented in Ref. [2]. 

A coherent detection is assumed as the demodulation scheme. The symbol error probability P M  of 
M-ary PAM is given by 
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And the probability of a bit error P b  is [3] 
 

Mb P
k

P 1
= ,    (2) 

 
where k is the number of bits, which are transmitted in one symbol, i.e. k=log2M. Using Eqs. (1) and 
(2), the required E s /N 0 , a signal power per symbol to noise power density ratio, can be calculated. 
Table 2 shows the required E s /N 0  for the bit error rate of 10-3. 

 
 

Table 2. Required E s /N 0  for M-ary PAM. 
 

M Required E s /N 0  [dB]
2 7 
4 13.75 
8 19.77 
16 25.5 
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Tp =1/BpTp =1/Bp

 

Fig. 2. Symbol of M-ary PAM．  

 
On the other hand, E s /N 0  is also presented by the following equation. 
 

][][ 000 pssdpaves BBNPNTPNE ×== , (3) 

 
where, 

P ave : Average received power, 
T p : Pulse repetition period, 
P sd : Average power spectral density, 
B s : Equivalent occupied bandwidth, and 
B p : Pulse repetition frequency. 
Equation (3) indicates that the pulse repetition period T p  becomes larger as requied E s /N 0  becomes 

larger. Take the receiver noise figure N F  into consideration, the pulse repetition frequency B p  can be 
written as 

 

]/[/][ 00 NENBNPB sFssdp ×= .  (4) 

 
Using log2M equal to a number of bits transmitted by one pulse, the achievable throughput R can 

be calculated as 
 

MBR p 2log×= .   (5) 

 
Assuming free-space propagation between a satellite UWB transmitter and a receiver, and also 

assuming P sd =-208.1 [dBm/Hz], B s =500 [MHz] from Table 1, N 0 =-174 [dBm/Hz] at room temperature 

(17[℃ ]), and N F =6 [dB], the achievable throughput can be calculated from Eqs. (4) and (5). Table 3 

summarizes the achievable throughput of the M-ary PAM UWB transmitted from a satellite using the 
Ku-band. 
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Table 3. Achievable throughput of M-ary PAM UWB．  

[bit/s]   
 2-ary 4-ary 8-ary 16-ary 
0 [dBi] 
(Same as terrestrial UWB) 

9.96 k 4.21 k 1.58 k 563 

5.0 [dBi] 
(Patch antenna) 

31.5 k 13.3 k 4.99 k 1.78 k 

19.8 [dBi] 
(10 cm dish) 

951 k 402 k 151 k 53.7 k 

33.7 [dBi] 
(50 cm dish) 

23.3 M 9.87 M 3.70 M 1.32 M 

39.8 [dBi] 
(1 m dish) 

95.1 M 40.2 M 15.1 M 5.37 M 

 
 

5.2. Multiband UWB 
In the terrestrial UWB, multiple transmission schemes adopting frequency-hopping over 3.1 - 10.6 

GHz have been proposed at IEEE802.15 TG3a. The mission of the standardization body is to define 
the physical layer specification for WPAN (Wireless Personal Area Network). Multiband UWB is one 
of the frequency hopping schemes and has the feature of bit rate scalable with the occupied 
frequency. 

Figure 3 shows an example of the symbol structure of the multiband UWB [4]. The symbol pulse 
consists of subpulses. And subpulses are hopping over multiple frequency bands. Data is encoded into 
the sequence pattern of bands and phase information of the subpulses. The number of bits (N) 
transmitted by one symbol is 

 

)2(log2
BP

BTBS PCN ••= ,   (6) 

 
where, 

S: Number of frequency bands, 
T: Number of subpulse time slots in a pulse, 
B: Number of non-zero entries, and 
P: Number of polarity bits. 

S C B  and T P B   indicate combination and permutation, respectively. In Eq. (6), data of log2( S C B・ T P B ) 

bits are transmitted by the sequence pattern, and data of log2(2BP) (=BP) bits are transmitted by the 
phase information of the subpulses. 

Assuming S=T=B, Eq. (6) can be written as follows; 
 

SPSN += )!(log2 .   (7) 
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Fig. 3. Example of symbol structure of multiband UWB．  
 
Upper bound of the subpulse error probability P s  of multiband UWB, which uses S bands, is given 

by 
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where, 

S: Number of frequency bands, 
E sp : Energy per subpulse, and 
N 0 : Noise spectral density. 
The relation between the energy per subpulse E sp  and the energy per symbol E s  is 
 

SEE sps ×= .    (9) 

 
Using Eqs. (8) and (9), the required E s /N 0  can be calculated. Table 4 shows the required E s /N 0  for 

the subpulse error rate of 10-3. 
 
 

Table 4. Required E s /N 0  for S－bands UWB 

 
S Required E s /N 0  [dB] 
4 14.5 
8 18 
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Similar to the M-ary PAM, the pulse repetition frequency B p  can be written as 
 

]/[/][ 00 NENBNPB sFssdp ×= .  (10) 

 
Because the number of bits in one symbol is expressed by Eq. (7), the achievable throughput R can 

be calculated as 
 

[ SPSBR p +×= )!(log2 ].   (11) 

 
Assuming the same as the M-ary PAM P sd =-208.1 [dBm/Hz], B s =500 [MHz], N 0 =-174 [dBm/Hz] 

and N F =6 [dB], the achievable throughput can be calculated from Eqs. (10) and (11). Table 5 presents 
the achievable throughput of the S-band UWB transmitted from a satellite using the Ku-band. 

 
 

Table 5. Achievable throughput of S-bands UWB. 
 

[bit/s]   
 4-bands 8-bands 
 BPSK QPSK BPSK QPSK 
0 [dBi] 
(Same as terrestrial UWB) 

15.2 k 22.3 k 18.4 k 28.4k 

5.0 [dBi] 
(Patch antenna) 

48.1 k 70.5 k 58.3 k 78.3 k 

19.8 [dBi] 
(10 cm dish) 

1.45 M 2.13 M 1.76 M 2.36 M 

33.7 [dBi] 
(50 cm dish) 

35.6 M 52.3 M 43.2 M 58.1 M 

39.8 [dBi] 
(1 m dish) 

145 M 213 M 176 M 236 M 

 
 

5.3. Analysis 
Table 3 shows that the transmission speed of the binary PAM up to 950 kbit/sec can be realized 

using a very small user antenna such as 10 cm.  And, when a larger antenna is utilized, considerably 
large throughput is realized. 

In Table 4, by adopting the multiband UWB scheme, a satellite UWB transmission speed of over 1 
Mbit/sec can be achieved using a 10 cm dish antenna. And throughput over 100 Mbit/sec is realized 
by utilizing a 1 m dish antenna. 

In the process of conducting the transmission speed, the bit error rate of 10-3 is used at M-ary PAM, 
and the subpulse error rate of 10-3 is used at the multiband UWB. In the multiband UWB scheme, 
data is transmitted by the sequence pattern of bands and phase information of the subpulses, so the 
relationship between the subpulse error rate and the bit error rate is difficult to be solved. As 
described above, in calculating the transmission speed, the error rate assumption of M-ary PAM and  
multiband UWB differs, so it is difficult to compare the transmission speeds directly. However, it can 
be said that the satellite UWB using M-ary PAM or multiband UWB can offer sufficiently high 
transmission speed. It indicates that these schemes have the possibility to be adopted in fixed satellite 
communications. 
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6. Conclusion 
Technical consideration and performance analysis are conducted for the satellite UWB system. The 

system could realize sufficient throughput with a small antenna in addition to its inherent suitable 
characteristics to widely broadcast information to many users simultaneously. 
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